SOME NEW GENERAL CONGRUENCE PROPERTIES FOR $p_r(n)$

MURUGAN.P., ANUSREE ANAND, AND FATHIMA. S. N.

ABSTRACT. We study certain supplementary congruences for $p_r(n)$ where n and r are non-negative integers with the application of theta function identities which are attributed to Ramanujan.

2000 Mathematics Subject Classification. 11P83, 11P84,

KEYWORDS AND PHRASES. Congruences, General partition function.

1. Introduction

Throughout the paper, we assume that |q| < 1 and employ the standard notation

$$(a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k).$$

A principal case of f(a,b) is the Euler's pentagonal number theorem.

$$f(-q) := f(-q, -q^2) = \sum_{k=-\infty}^{\infty} (-1)^k q^{k(3k-1)/2} = (q; q)_{\infty}.$$

For convenience, we write $f_n := f(-q^n)$.

In 1918, Ramanujan [5, p. 192-193] set forth the discussion of the general partition function for any non-negative and non-zero integer represented as n and r, and denoted by $p_r(n)$ as

(1)
$$\sum_{n=0}^{\infty} p_r(n)q^n = \frac{1}{(q;q)_{\infty}^r}, |q| < 1.$$

For r=1, $p_1(n)$ represents the partition function which counts the number of unrestricted partition of any given non-negative integer n. For rotational convenience $p_1(n)$ can be denoted as p(n). Ramanujan [5] asserted that a positive integer λ and any prime $\overline{\nu}$, which can be represented as $6\lambda - 1$, satisfies

$$p_{-4}\left(n\overline{\nu} - \frac{\overline{\nu} + 1}{6}\right) \equiv 0 \pmod{\overline{\nu}}.$$

The congruence properties of the partition function $p_r(n)$ for certain negative value of r have studied by Ramanathan [13], Atkin [1], Ono [11], Saikia and Chetry [14], Srivatsava et al., [16], Murugan and Fathima [9]. Also the congruence properties of the partition function $p_r(n)$ for certain positive values of r have been studied by Gandhi [7], Newman [10], Baruah and Ojah [3]. Recently, Saikia and Baruah [15] discussed certain new properties of the

The second author's work was supported by UGC-JRF.

general partition function $p_r(n)$ modulo 5 and 7 for certain positive values of r. Also Srivasta et al., [12] have established certain general congruence properties of $p_r(n)$ modulo 13 for some positive values of r.

In this paper, we study infinite family of congruences for $p_r(n)$ modulo 13, where r is positive. For non-negative integer k we establish some infinite family of congruences for $p_r(n)$ modulo p^2 , where r is $p^2k + p^2 - 1$ and $p^2k + p^2 - 3$. The following are our main results.

Theorem 1.1. Let k be any non-negative integer, we have

(2)
$$p_{13k+10}(13n+\nu) \equiv 0 \pmod{13},$$

(3)
$$p_{13k+12}(13n + \mu) \equiv 0 \pmod{13},$$

where $\nu \in \{4, 5, 7, 8, 9, 11, 12\}$ and $\mu \in \{3, 4, 6, 8, 10, 11\}$.

Theorem 1.2. Let k be any non-negative integer, we have

(4)
$$p_{169k+8}(169n+13\nu+9) \equiv 0 \pmod{13},$$

(5)
$$p_{169k+9}(169n+13\nu+2) \equiv 0 \pmod{13},$$

(6)
$$p_{169k+32}(169n+13\nu+10) \equiv 0 \pmod{13},$$

(7)
$$p_{169k+33}(169n+13\nu+3) \equiv 0 \pmod{13},$$

(8)
$$p_{169k+56}(169n+13\nu+11) \equiv 0 \pmod{13}$$
,

(9)
$$p_{169k+57}(169n+13\nu+4) \equiv 0 \pmod{13},$$

(10)
$$p_{169k+80}(169n+13\nu+12) \equiv 0 \pmod{13},$$

(11)
$$p_{169k+81}(169n+13\nu+5) \equiv 0 \pmod{13},$$

(12)
$$p_{169k+105}(169n+13\nu+6) \equiv 0 \pmod{13},$$

(13)
$$p_{169k+129}(169n+13\nu+7) \equiv 0 \pmod{13},$$

where $\nu \in \{4, 5, 7, 8, 9, 11, 12\}.$

Theorem 1.3. Let k be any non-negative integer, we have

(14)
$$p_{169k+34}(169n+13\mu+9) \equiv 0 \pmod{13},$$

(15)
$$p_{169k+35}(169n+13\mu+2) \equiv 0 \pmod{13},$$

(16)
$$p_{169k+58}(169n+13\mu+10) \equiv 0 \pmod{13},$$

(17)
$$p_{169k+59}(169n+13\mu+3) \equiv 0 \pmod{13},$$

(18)
$$p_{169k+82}(169n+13\mu+11) \equiv 0 \pmod{13},$$

(19)
$$p_{169k+83}(169n+13\mu+4) \equiv 0 \pmod{13},$$

(20)
$$p_{169k+106}(169n+13\mu+12) \equiv 0 \pmod{13},$$

(21)
$$p_{169k+107}(169n+13\mu+5) \equiv 0 \pmod{13},$$

(22)
$$p_{169k+131}(169n+13\mu+6) \equiv 0 \pmod{13},$$

where $\mu \in \{3, 4, 6, 8, 10, 11\}$.

Theorem 1.4. Let k be any non-negative integer, we have

(23)
$$p_{169k+47}(169n+13\kappa+9) \equiv 0 \pmod{13},$$

(24)
$$p_{169k+48}(169n+13\kappa+2) \equiv 0 \pmod{13},$$

(25)
$$p_{169k+71}(169n+13\kappa+10) \equiv 0 \pmod{13},$$

(26)
$$p_{169k+72}(169n+13\kappa+3) \equiv 0 \pmod{13},$$

(27)
$$p_{169k+95}(169n+13\kappa+11) \equiv 0 \pmod{13},$$

(28)
$$p_{169k+96}(169n+13\kappa+4) \equiv 0 \pmod{13},$$

(29)
$$p_{169k+119}(169n+13\kappa+12) \equiv 0 \pmod{13},$$

(30)
$$p_{169k+120}(169n+13\kappa+5) \equiv 0 \pmod{13},$$

where $\kappa \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$

Theorem 1.5. For any prime $p \ge 5$, $k \equiv -1 \pmod{p}$ and $1 \le \nu \le p-1$, we have

(31)
$$p_{p^2k+p^2-1}\left(p^2n+p\nu+\frac{p^2-1}{24}\right) \equiv 0 \pmod{p^2}.$$

Theorem 1.6. For any odd prime p and $1 \le \nu \le p-1$, we have

(32)
$$p_{p^2k+p^2-3}\left(p^2n+p\nu+\frac{p^2-1}{8}\right) \equiv 0 \pmod{p^2}.$$

2. Preliminaries

We first collect some necessary notation and identities which are needed to prove the main results of this paper.

Ramanujan's general theta-function f(a, b) [4, p.35, Entry 19] is defined by

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2} = (-a,ab)_{\infty} (-b,ab)_{\infty} (ab,ab)_{\infty}, \ |ab| < 1$$

The following 13-dissection identity holds.

From Berndt [4, p. 373, Entry 8(i), eq. (8.1)], we have

(33)
$$f_{1} = f_{169} \left(\frac{L(q^{13})}{J(q^{13})} - q \frac{N(q^{13})}{K(q^{13})} - q^{2} \frac{J(q^{13})}{I(q^{13})} + q^{5} \frac{M(q^{13})}{L(q^{13})} + q^{7} - q^{12} \frac{K(q^{13})}{M(q^{13})} + q^{22} \frac{I(q^{13})}{N(q^{13})} \right),$$

where

$$\begin{split} I(q) &=: f(-q,-q^{12}), J(q) =: f(-q^2,-q^{11}), K(q) =: f(-q^3,-q^{10}), \\ L(q) &=: f(-q^4,-q^9), M(q) =: f(-q^5,-q^8), N(q) =: f(-q^6,-q^7). \end{split}$$

Again, Berndt [4, p. 39, Entry 24(II)], we have

$$f_1^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1) q^{n(n+1)/2},$$

and its follows that

$$f_1^3 = A_0(q^{13}) - 3qA_1(q^{13}) + 5q^3A_2(q^{13}) - 7q^6A_3(q^{13}) + 9q^{10}A_4(q^{13}) - 11q^{15}A_5(q^{13}) + 13q^{21}A_6(q^{13}),$$

where $A_0, A_1, A_2, A_3, A_4, A_5$ and A_6 are series involving integral powers of q^{13} .

The following p-dissection identity holds.

From [6, Theorem 2.2], for any prime $p \geq 5$ and

$$\frac{\pm p - 1}{6} = \begin{cases} \frac{p - 1}{6}, & \text{if } p \equiv 1 \pmod{6} \\ \frac{-p - 1}{6}, & \text{if } p \equiv -1 \pmod{6}, \end{cases}$$

we have

$$f_{1} = \sum_{\substack{k = -\frac{p-1}{2} \\ k \neq \frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k} q^{\frac{3k^{2}+k}{2}} f\left(-q^{\frac{3p^{2}+(6k+1)}{2}}, -q^{\frac{3p^{2}-(6k+1)}{2}}\right) + (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}}.$$

Furthermore, if $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $k \ne \frac{\pm p-1}{6}$, then $\frac{3k^2+k}{2} \not\equiv \frac{p^2-1}{24} \pmod{p}$. From [2, Lemma 2.3], for any prime $p \ge 3$, we have

(36)
$$f_1^3 = \sum_{\substack{k=0\\k \neq \frac{p-1}{2}}}^{p-1} (-1)^k q^{\frac{k^2+k}{2}} \sum_{n=0}^{\infty} (-1)^n (2pn+2k+1) q^{pn \cdot \frac{pn+2k+1}{2}} + p(-1)^{\frac{p-1}{2}} q^{\frac{p^2-1}{3}} f_{p^2}^3.$$

Furthermore, if $0 \le k \le p-1$ and $k \ne \frac{p-1}{2}$, then $\frac{k^2+k}{2} \not\equiv \frac{p^2-1}{8} \pmod{p}$. From Hirschhorn [8], we note that, if

(37)
$$\eta := \frac{f_1}{q^7 f_{169}} \text{ and } S := \frac{f_{13}^2}{q^{13} f_{169}^2},$$

then

$$H_{13}(\eta) = 1,$$

$$H_{13}(\eta^2) = -2S - 1,$$

$$H_{13}(\eta^3) = 13,$$

$$H_{13}(\eta^4) = 2S^2 - 13,$$

$$H_{13}(\eta^5) = -20S^2 - 10 \times 13S - 13^2,$$

$$H_{13}(\eta^6) = 10S3 - 13^2,$$

$$H_{13}(\eta^7) = 98S^3 + 28 \times 13S^2 - 13^3,$$

$$H_{13}(\eta^8) = -70S^4 - 13^3,$$

$$H_{13}(\eta^9) = -162S^4 + 108 \times 13S^3 + 72 \times 13^2S^2 + 18 \times 13^3S + 13^4,$$

$$H_{13}(\eta^{10}) = 238S^5 - 13^4,$$

$$H_{13}(\eta^{11}) = -902S^5 - 1672 \times 13S^4 - 792 \times 13^2S^3 - 198 \times 13^3S^2 - 22 \times 13^4S - 13^5,$$

$$H_{13}(\eta^{12}) = -418S^6 - 13^5,$$

$$H_{13}(\eta^{13}) = S^7 + 51 \times 13^2S^6 + 808 \times 13^2S^5 + 398 \times 13^3S^4 + 110 \times 13^4S^3 + 16 \times 13^5S^2 + 13^6S,$$

$$(38) H_{13}(\eta^{14}) = -506S^7 - 13^6.$$

From binomial theorem for any prime p, we have

$$(39) f_1^p \equiv f_p \pmod{p}.$$

$$(40) f_1^{p^2} \equiv f_p^p \pmod{p^2}.$$

(41)
$$pf_1^p \equiv pf_p \pmod{p^2}.$$

3. Proofs of Theorems 1.1 -1.4

Proof of Theorem 1.1. Setting r = 13k + 10 in (1), we obtain

$$\sum_{n=0}^{\infty} p_{13k+10}(n)q^n = \frac{1}{f_1^{13k+10}}.$$

Using (39) in above identity, we obtain

(42)
$$\sum_{n=0}^{\infty} p_{13k+10}(n)q^n \equiv \frac{f_1^3}{f_{13}^{k+1}} \pmod{13}.$$

Using identity (34) in identity (42) and drawing out the common terms of $q^{13n+\nu}$ which occurs on both sides where $\nu \in \{4,5,7,8,9,11,12\}$, we complete the proof of identity (2).

Setting r = 13k + 12 in (1), we obtain

$$\sum_{n=0}^{\infty} p_{13k+12}(n)q^n = \frac{1}{f_1^{13k+12}}.$$

Using (39) in above identity, we obtain

(43)
$$\sum_{n=0}^{\infty} p_{13k+12}(n)q^n \equiv \frac{f_1}{f_{13}^{k+1}} \pmod{13}.$$

On employing identity (33) in identity (43) and drawing out the common terms of $q^{13n+\mu}$ which occurs on both sides, where $\mu \in \{3,4,6,8,10,11\}$, we complete the proof of identity (3).

Proof of Theorem 1.2. Setting r = 169k + 8 in (1), we obtain

$$\sum_{n=0}^{\infty} p_{169k+8}(n)q^n = \frac{1}{f_1^{169k+8}}.$$

Using (39) in above identity, we obtain

$$\sum_{n=0}^{\infty} p_{169k+8}(n)q^n \equiv \frac{f_{169}^5}{f_{169}^k f_{13}} \pmod{13}.$$

Employing (37) in above identity, we obtain

(44)
$$\sum_{n=0}^{\infty} p_{169k+8}(n)q^n \equiv \frac{q^{35}\eta^5}{f_{169}^{k-5}f_{13}} \pmod{13}.$$

Drawing out common terms of q^{13n+9} and applying operator H_{13} in (44), we obtain

(45)
$$\sum_{n=0}^{\infty} p_{169k+8} (13n+9) q^{13n+9} \equiv \frac{q^{35} H_{13}(\eta^5)}{f_{169}^{k-5} f_{13}} \pmod{13}.$$

From identities (38) and (45), we have

$$\sum_{n=0}^{\infty} p_{169k+8}(13n+9)q^{13n+9} \equiv 6q^9 \frac{f_{13}^3}{f_{169}^{169}} \pmod{13}.$$

Dividing the resulting identity by q^9 and changing q to $q^{1/13}$, we obtain

(46)
$$\sum_{n=0}^{\infty} p_{169k+8}(13n+9)q^n \equiv 6\frac{f_1^3}{f_{13}^{k-1}} \pmod{13}.$$

Applying identity (34) in identity (46) and drawing out the common terms of $q^{13n+\nu}$ which occurs on both sides where $\nu \in \{4,5,7,8,9,11,12\}$, we complete the proof of identity (4).

We omit the proofs of identities (5) to (13), since their proofs are similar to proof of identity (4). \Box

Proof of Theorem 1.3. Setting r = 169k + 34 in (1), we obtain

$$\sum_{n=0}^{\infty} p_{169k+34}(n)q^n = \frac{1}{f_1^{169k+34}}.$$

Using (39) in above identity, we obtain

$$\sum_{n=0}^{\infty} p_{169k+34}(n)q^n \equiv \frac{f_1^5}{f_{169}^k f_{13}^3} \pmod{13}.$$

Employing (37) in above identity, we obtain

(47)
$$\sum_{n=0}^{\infty} p_{169k+34}(n)q^n \equiv \frac{q^{35}\eta^5}{f_{169}^{k-5}f_{13}^3} \pmod{13}.$$

Drawing out common terms of q^{13n+9} and applying operator H_{13} in (47), we obtain

(48)
$$\sum_{n=0}^{\infty} p_{169k+34}(13n+9)q^{13n+9} \equiv \frac{q^{35}H_{13}(\eta^5)}{f_{169}^{k-5}f_{13}^3} \pmod{13},$$

From identities (38) and (48), we have

$$\sum_{n=0}^{\infty} p_{169k+34}(13n+9)q^{13n+9} \equiv 6q^9 \frac{f_{13}}{f_{169}^{k-1}} \pmod{13},$$

Dividing the resulting identity by q^9 and changing q to $q^{1/13}$, we obtain

(49)
$$\sum_{n=0}^{\infty} p_{169k+34}(13n+9)q^n \equiv 6\frac{f_1}{f_{13}^{k-1}} \pmod{13}.$$

Employing identity (34) in identity (49) and drawing out the common terms of $q^{13n+\mu}$ which occurs on both sides where $\mu \in \{3, 4, 6, 8, 10, 11\}$, we complete the proof of identity (14).

We omit the proofs of identities (15) to (22), since their proofs are similar to proof of identity (14).

Proof of Theorem 1.4. Setting r = 169k + 47 in (1), we obtain

$$\sum_{n=0}^{\infty} p_{169k+47}(n)q^n = \frac{1}{f_1^{169k+47}}.$$

Using (39) in above identity, we obtain

$$\sum_{n=0}^{\infty} p_{169k+47}(n)q^n \equiv \frac{f_1^5}{f_{169}^k f_{13}^4} \pmod{13}.$$

Employing (37) in above identity, we obtain

(50)
$$\sum_{n=0}^{\infty} p_{169k+47}(n)q^n \equiv \frac{q^{35}\eta^5}{f_{169}^{k-5}f_{13}^4} \pmod{13}.$$

Drawing out common terms of q^{13n+9} and applying operator H_{13} in (50), we obtain

(51)
$$\sum_{n=0}^{\infty} p_{169k+47}(13n+9)q^{13n+9} \equiv \frac{q^{35}H_{13}(\eta^5)}{f_{169}^{k-5}f_{13}^4} \pmod{13},$$

From identities (38) and (51), we have

$$\sum_{n=0}^{\infty} p_{169k+47}(13n+9)q^{13n+9} \equiv 6q^9 \frac{1}{f_{169}^{k-1}} \pmod{13}.$$

Dividing the resulting identity by q^9 and changing q to $q^{1/13}$, then from resulting identities drawing out common terms of $q^{13n+\kappa}$ which occurs on both sides where $\kappa \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, we complete the proof

of identity (23).

We omit the proofs of identities (24) to (30), since proofs are similar to proof of identity (23).

4. Proofs of Theorems 1.5 and 1.6

Proof of Theorem 1.5. Setting $r = p^2k + p^2 - 1$ in (1), we obtain

$$\sum_{n=0}^{\infty} p_{p^2k+p^2-1}(n)q^n = \frac{1}{f_1^{p^2k+p^2-1}}.$$

Using (40) in above identity, we obtain

(52)
$$\sum_{n=0}^{\infty} p_{p^2k+p^2-1}(n)q^n \equiv \frac{f_1}{f_p^{p(k+1)}} \pmod{p^2}.$$

Employing (35) in (52), we obtain

$$\sum_{n=0}^{\infty} p_{p^{2}k+p^{2}-1}(n)q^{n}$$

$$\equiv \frac{1}{f_{p}^{p(k+1)}} \sum_{\substack{m=-\frac{p-1}{2}\\ m \neq \frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{m} q^{\frac{3m^{2}+m}{2}} f\left(-q^{\frac{3p^{2}+(6m+1)}{2}}, -q^{\frac{3p^{2}-(6m+1)}{2}}\right)$$

$$+ \frac{1}{f_{p}^{p(k+1)}} (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}} \pmod{p^{2}}.$$
(53)

For any prime p with $-\frac{p-1}{2} \le m \le \frac{p-1}{2}$, consider the following congruence

$$\frac{3m^2 + m}{2} \equiv \frac{p^2 - 1}{24} \pmod{p},$$

which is equivalent to $(6m+1)^2 \equiv 0 \pmod{p}$, since it has only solution $m = \frac{\pm p - 1}{6}$.

Drawing out common terms of $q^{pn+\frac{p^2-1}{24}}$ which occurs on both sides in (53) then dividing the resulting identity by $q^{(p^2-1)/24}$ and changing q to $q^{1/p}$, we obtain

$$\sum_{n=0}^{\infty} p_{p^2k+p^2-1} \left(pn + \frac{p^2-1}{24} \right) q^n \equiv \frac{(-1)^{\frac{\pm p-1}{6}} f_p}{f_1^{p(k+1)}} \pmod{p^2}.$$

From above identity if k+1 is multiples of p, then we obtain

(54)
$$\sum_{n=0}^{\infty} p_{p^2k+p^2-1} \left(pn + \frac{p^2 - 1}{24} \right) q^n \equiv \frac{(-1)^{\frac{\pm p - 1}{6}} f_p}{f_p^{pm}} \pmod{p^2}.$$

Drawing out common terms of $q^{pn+\nu}$ which occurs on both sides in (54) where $\nu \in \{1, 2, ..., p-1\}$, we complete the proof of identity (31).

Proof of Theorem 1.6. Setting $r = p^2k + p^2 - 3$ in (1), we obtain

$$\sum_{n=0}^{\infty} p_{p^2k+p^2-3}(n)q^n = \frac{1}{f_1^{p^2k+p^2-3}}.$$

Using (40) in above identity, we obtain

(55)
$$\sum_{n=0}^{\infty} p_{p^2k+p^2-3}(n)q^n \equiv \frac{f_1^3}{f_p^{p(k+1)}} \pmod{p^2}.$$

Employing identity (36) in identity (55), we obtain

$$\sum_{n=0}^{\infty} p_{p^{2}k+p^{2}-3}(n)q^{n} \equiv \frac{1}{f_{p}^{p(k+1)}} \sum_{\substack{m=0\\ m \neq \frac{p-1}{2}}}^{p-1} (-1)^{m} q^{\frac{m^{2}+m}{2}}$$

$$\sum_{n=0}^{\infty} (-1)^{n} (2pn+2m+1) q^{pn \cdot \frac{pn+2m+1}{2}} + \frac{1}{f_{p}^{p(k+1)}} \cdot p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{3}} f_{p^{2}}^{3} \pmod{p^{2}}.$$
(56)

For any prime p with $0 \le m \le p-1$, consider

$$\frac{m^2 + m}{2} \equiv \frac{p^2 - 1}{8} \pmod{p},$$

The above congruence is equivalent to $(2m+1)^2 \equiv 0 \pmod{p}$, since it has only solution $m = \frac{p-1}{2}$.

Drawing out the common terms of $q^{pn+\frac{p^2-1}{8}}$ which occurs on both sides in (56) then dividing the resulting identity by $q^{(p^2-1)/8}$ and changing q to $q^{1/p}$, we obtain

(57)
$$\sum_{n=0}^{\infty} p_{p^2k+p^2-3} \left(pn + \frac{p^2-1}{8} \right) q^n \equiv \frac{(-1)^{\frac{p-1}{2}} pf_p}{f_1^{p(k+1)}} \pmod{p^2}.$$

Employing identity (41) in identity (57), we obtain

$$\sum_{n=0}^{\infty} p_{p^2k+p^2-1} \left(pn + \frac{p^2 - 1}{8} \right) q^n \equiv \frac{(-1)^{\frac{p-1}{2}} p}{f_p^k} \pmod{p^2}.$$

Drawing out the common terms of $q^{pn+\nu}$ which occurs on both sides where $\nu \in \{1, 2, ..., p-1\}$ in above identity, we complete the proof of identity (32).

Acknowledgments The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

- [1] A. O. L. Atkin, Ramanujan congruences for $p_k(n)$, Canad. J. Math., 20 (1968), 67–78.
- [2] Z. Ahmed, N. D. Baruah, New congruences for l-regular partitions for $l \in \{5, 6, 7, 49\}$, Ramanujan J., 40 (2016), 649–668.
- [3] N. D. Baruah, and K. K. Ojha, Some congruences deducible from Ramanujan's cubic continued fraction, Int. J. Number Theory, 07 (2011), 1331–1343.
- [4] B. C. Berndt, Ramanujan's Notebooks. Part III, Springer, New York, NY, USA (1991).
- [5] B. C. Berndt, R. A. Rankin, Ramanujan: Letters and commentary, American Mathematical Society Providence, (1995).
- [6] S. P. Cui, N. S. S. Gu, Arithmetic properties of l-regular partitions, Adv. in Appl. Math., 51 (2013), 507–523.
- [7] J. M. Gandhi, Congruences for p_r(n) and Ramanujan's τ function, Am. Math. Mon., 70 (1963), 265–274.
- [8] M. D. Hirschhorn, Ramanujan's tau function, in: Analytic number theory, modular forms and q-hypergeometric series, 311-328, Springer Proc. Math. Stat. 221 (2017), Springer, Cham.
- [9] P. Murugan, S. N. Fathima, Some congruences for Ramanujan's general partition function, Palestine J. Math. (Accepted).
- [10] M. Newmann, Congruence for the coefficients of modular forms and some new congruences for the partition function, Canad. J. Math., 151 (1)(2000), 293–307.
- [11] K. Ono, Distribution of the partition function modulo m, Ann. Math., 59(4) (1992), 348–360.
- [12] D. A. Radha, B.R Srivatsa Kumar, and H. Shruthi, Some Congruence Properties for Ramanujan's General Partitions, In Proceedings of the Jangjeon Mathematical Society, 23(3)(2020), 415-423.
- [13] K. G. Ramanathan, Identities and congruences of the Ramanujan type, Canad. J. Math., 2 (1950), 168-178.
- [14] N. Saikia, J. Chetry, Infinite family of congruences modulo 7 for Ramanujan's general partition function, Ann. Math. Quebec., 42(1) (2018), 127-132.
- [15] N. Saikia, C. Boruah, General congruences modulo 5 and 7 for colour partitions, J Anal, 29 (2021), 917–926.
- [16] B. R. Srivatsa Kumar, Shruthi and D. Ranganatha, Some new congruences modulo 5 for the general partition function, Russ Math., 64 (2020), 73-78.

Department of Mathematics, Madanapalle institute of technology & science, Madanapalle, Andhra Pradesh- 517325, India

 $Email\ address: {\tt muruganp.math@gmail.com}$

Department of Mathematics, Pondicherry University, Kalapet, Puducherry-605014. India

Email address: anusreeanand05@gmail.com

Department of Mathematics, Pondicherry University, Kalapet, Puducherry-605014. India

Email address: dr.fathima.sn@gmail.com