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ABSTRACT. We study certain supplementary congruences for p,(n) where
n and r are non-negative integers with the application of theta function
identities which are attributed to Ramanujan.
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1. INTRODUCTION

Throughout the paper, we assume that |¢g| < 1 and employ the standard

notation
o0

(a; @)oo = [ [ (1 — ag®).

k=0
A principal case of f(a,b) is the Euler’s pentagonal number theorem,

oo

f=0) = f(=a0. ") = 3 (1" D2 = (g:9)e.
k=—0c0

For convenience, we write f, := f(—q¢").
In 1918, Ramanujan [5, p. 192-193] set forth the discussion of the general
partition function for any non-negative and non-zero integer represented as
n and 7, and denoted by p,(n) as

oo
1

1 n)g" = ———— 1.

(1) ;pr( 0= e lal <

For r =1, p1(n) represents the partition function which counts the number
of unrestricted partition of any given non-negative integer n. For rotational
convenience p;(n) can be denoted as p(n). Ramanujan [5] asserted that a
positive integer A and any prime 7, which can be represented as 6\ — 1,

satisfies
v+1
Dy <nﬁ — %) =0 (mod7).

The congruence properties of the partition function p,(n) for certain negative
value of r have studied by Ramanathan [13], Atkin [1], Ono [11], Saikia
and Chetry [14], Srivatsava et al., [16], Murugan and Fathima [9]. Also
the congruence properties of the partition function p,(n) for certain positive
values of r have been studied by Gandhi [7], Newman [10], Baruah and Ojah
[3]. Recently, Saikia and Baruah [15] discussed certain new properties of the

The second author’s work was supported by UGC-JRF.



754

Murugan.P., Anusree Anand and Fathima. S. N.

general partition function p,(n) modulo 5 and 7 for certain positive values
of r. Also Srivasta et al., [12] have established certain general congruence

properties of p,(n) modulo 13 for some positive values of r.

In this paper, we study infinite family of congruences for p,(n) modulo 13,
where r is positive. For non-negative integer k& we establish some infinite
family of congruences for p,(n) modulo p?, where r is p’k + p?> — 1 and

p?k + p? — 3. The following are our main results.
Theorem 1.1. Let k be any non-negative integer, we have
(2) P1sk+10(13n+v) =0 (mod 13),

(3) P1sk+12(13n+ 1) =0 (mod 13),
where v € {4,5,7,8,9,11,12} and p € {3,4,6,8,10,11}.

Theorem 1.2. Let k be any non-negative integer, we have

(4) Prook+s(169n + 130 +9) =0 (mod 13),

(5) P169k+9(169n +13v +2) =0 (mod 13),

(6) P169k+32(169n + 130 4+ 10) =0 (mod 13),
(7) P169k+33(169n + 130 +3) =0 (mod 13),
(8) Prook+56(169n 4+ 130 +11) =0 (mod 13),
(9) P169k+57(169n + 13v +4) =0 (mod 13),
(10) Preoktso(169n + 130 +12) =0 (mod 13),
(11) Preokss1(169n + 130 +5) =0 (mod 13),
(12) P169k+105(169n + 130 +6) =0 (mod 13),
(13) Prook+120(169n + 130 +7) =0 (mod 13),

where v € {4,5,7,8,9,11,12}.

Theorem 1.3. Let k be any non-negative integer, we have

(14) P169k+34(169n + 134+ 9) =0 (mod 13),
(15) P169k+35(169n + 13+ 2) =0 (mod 13),
(16) P16ok+5s8(169n + 134+ 10) =0 (mod 13),
(17) P169k+59(169n + 13 +3) =0 (mod 13),
(18) Prook+s2(169n + 134 +11) =0 (mod 13),
(19) D169k+83(169n + 134+ 4) =0 (mod 13),
(20) P169k+106(169n + 134 +12) =0 (mod 13),
(21) P169k+107(169n + 131 +5) =0 (mod 13),
(22) D16ok+131(169n 4+ 1314+ 6) =0 (mod 13),
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where p € {3,4,6,8,10,11}.

Theorem 1.4. Let k be any non-negative integer, we have

(23) D169k+47(169n + 135k +9) =0  (mod 13),
(24) P169k+48(169n + 135 +2) =0 (mod 13),
(25) P169k+71(169n + 135 +10) =0 (mod 13),
(26) P1eok+72(169n + 135 +3) =0 (mod 13),
(27) P169k+95(169n + 135 +11) =0 (mod 13),
(28) P1ookro6(169n + 13k +4) =0 (mod 13),
(29) P16ok+119(169n + 13k +12) =0 (mod 13),
(30) P169k+120(169n 413k +5) =0 (mod 13),

where k € {1,2,3,4,5,6,7,8,9,10,11,12}.

Theorem 1.5. For any prime p > 5, k= —1 (mod p) and 1 <v <p-—1,

we have
P2

24

-1
) =0 (mod p?).
Theorem 1.6. For any odd prime p and 1 <v < p—1, we have

i 1) —0 (mod p?).

(31) Pp2htp?—1 <p n + pv +

p
(32) Pp2ktp2—3 <p2n +pv +

2. PRELIMINARIES

We first collect some necessary notation and identities which are needed to

prove the main results of this paper.

Ramanujan’s general theta-function f(a,b) [4, p.35, Entry 19] is defined by

o0

fla,b) = > a0 N2 = (g, ab)o(—b, ab)o (ab, ab)sc, |ab| < 1
n=—oo

The following 13-dissection identity holds.

From Berndt [4, p. 373, Entry 8(i), eq. (8.1)], we have

(L) NP LJ@P) | M)
fl‘f“g(ﬂq) K™ 1™ T I

K(q") 1(¢")
% o =0+ )
where
I(q) =: f(—=¢,—4"%), J(q) =: f(—¢*,—a""), K(q) =: f(—¢*,—q"),
L(q) =: f(—¢",—¢"),M(q) =: f(—¢°,—¢"), N(q) =: f(—¢®,—q").
Again, Berndt [4, p. 39, Entry 24(II)], we have

oo

1= 3 (1) @+ g,

n=0
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and its follows that

£ = A0(¢") — 3¢A1(¢") + 5¢> A2(¢") — 7¢° A3(¢"?) + 9¢"° A4 (¢"?)
(34) — 11¢"° A5 (¢™) + 13¢*' A6(¢"?),

where Ao, A1, Ag, A3 Ay, A5 and Ag are series involving integral powers of
13
q .

The following p-dissection identity holds.
From [6, Theorem 2.2], for any prime p > 5 and

6 61, ifp=-1 (mod 6),

j:p—l_{pTl, ifp=1 (mod 6)
=<5

we have

(35)

p—1
2

3624k 3p2+(6k+1) 3p%—(6k+1) £p—1 p2-1
fi= Y (=Dfg f(—q T, 2 )+(—1) 6 q T [y

k=—21

+ 21
k#%

2
Furthermore, if —1%1 <k< 1%1 and k # ip6_l, then WT*]“ % 1’2—21 (mod p).

From [2, Lemma 2.3], for any prime p > 3, we have

(36)
3 p! L Ktk > " . P2k p—1 p>—1 3
B=3 (Df = Y ()@t 2k + 1) 4 p(-1)"T 7T S
k=0 n=0
kAESL

Furthermore, if 0 <k <p—1and k # p%l, then @ E2 % (mod p).
From Hirschhorn [8], we note that, if

fi i
37 S £ L 1
(37) K q" f169 a3 fiso
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then
Hi3(n) 1,
Hiz(n*) = —25—1,
Hiz(n®) = 13,
Hiz(n) = 282 -13,
His(n’) = —2058%—10x 135 — 132,
Hi3(n®) = 1083 —13?
His(n") = 985%+28 x 1352 — 13%,
Hiz(n®) = —708%—133,
Hiz(n°) = —1625% +108 x 1353 + 72 x 1325% + 18 x 1335 + 134,
Hy3(n'%) = 23858° — 13,
Hiz(n') = —9028° — 1672 x 135* — 792 x 13283 — 198 x 13352
—22 x 139 — 135,
Hiz(n'?) = —4185% —13°,
Hys(n'®) = 87451 x 13%28% + 808 x 13257 + 398 x 13354
+110 x 13*5% + 16 x 13752 + 1368,
(38) Hiz(n'*) = —50687 — 135,
From binomial theorem for any prime p, we have
(39) fi=/fp (modp).
2
(40) 7= f7 (mod p?).
(41) pff =pf, (mod p?).

3. PROOFS OF THEOREMS 1.1 -1.4
Proof of Theorem 1.1. Setting r = 13k + 10 in (1), we obtain

= 1
> piski10(n)q" = o
n=0 fl
Using (39) in above identity, we obtain
3 w_ 7
(42) > piserio(n)g” = w7 (mod 13).
n=0 13

Using identity (34) in identity (42) and drawing out the common terms
of ¢'3"* which occurs on both sides where v € {4,5,7,8,9,11,12}, we
complete the proof of identity (2).

Setting r = 13k 4+ 12 in (1), we obtain

= 1
> piskrz(n)d" = [IECEE
1

n=0

757



758

Murugan.P., Anusree Anand and Fathima. S. N.

Using (39) in above identity, we obtain

o0
(43) ZP13k+12(n)q" = f-lH (mod 13).
n=0 13

On employing identity (33) in identity(43) and drawing out the common
terms of ¢'3"*# which occurs on both sides, where u € {3,4,6,8,10,11}, we
complete the proof of identity (3). d

Proof of Theorem 1.2. Setting r = 169k + 8 in (1), we obtain

0o

n 1
E p169k+8(n)q = 169k+8 "
n=0 1

Using (39) in above identity, we obtain

> preorrs(n)g” = - (mod 13).

n=0 f169f13
Employing (37) in above identity, we obtain

s @
(44) > preokrs(n)g" = ——— (mod 13).

=0 fieo” f13
Drawing out common terms of ¢'3"*® and applying operator Hig in (44),
we obtain

> 35 5
g’ His

(45) > preokrs(13n + 9)g"" o = ?(77) (mod 13).

n=0 169 f13
From identities (38) and (45), we have

oo
fi:
> preoers(13n + 9)g"¥ = 6071 (mod 13).
n=0 160
Dividing the resulting identity by ¢ and changing ¢ to ¢/!3, we obtain
(46) Zp169k+8(13n +9)¢" = 6fk£1 (mod 13).
n=0 13

Applying identity (34) in identity (46) and drawing out the common terms
of ¢'3"* which occurs on both sides where v € {4,5,7,8,9,11,12}, we
complete the proof of identity (4).

We omit the proofs of identities (5) to (13), since their proofs are similar to
proof of identity (4). O

Proof of Theorem 1.3. Setting r = 169k + 34 in (1), we obtain
= 1

ZP169k+34(71)qn = 169k134"

n=0 fl

Using (39) in above identity, we obtain
f5

=L (mod 13).
Flso s

e}
Z P16ok+34(n)q"
n=0
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Employing (37) in above identity, we obtain

35,,5

[e.e]
n_ 447
(47) > " preokrsa(n)g” = k_5]3 (mod 13).
n=0 fieo” fis

13n+9

Drawing out common terms of ¢ and applying operator Hi3 in (47),

we obtain

S 13040 _ ¢ Hiz(n°)
(48) > preokrsa(13n + 9)g" o = or.—  (mod 13),
n=0 Fiso” fis

From identities(38) and (48), we have

oo
ZP169k+34(13n +9)¢"3 1 = 64° ];1_31 (mod 13),
n=0 fi6o
Dividing the resulting identity by ¢ and changing ¢ to ¢/!3, we obtain
o0
(49) > prook+3a(13n + 9)q" = 6}01{1_1 (mod 13).
n=0 13

Employing identity (34) in identity (49) and drawing out the common terms
of ¢'3"*# which occurs on both sides where u € {3,4,6,8,10,11}, we com-
plete the proof of identity (14).

We omit the proofs of identities (15) to (22), since their proofs are similar

to proof of identity (14). O
Proof of Theorem 1.4. Setting r = 169k + 47 in (1), we obtain
oo
n 1
Zp169k+47(7l)q = 169k+47"
n=0 fl
Using (39) in above identity, we obtain
Zp169k+47(n)qn = 5 1 1 (mod 13).
n=0 freof13
Employing (37) in above identity, we obtain
o0 PR
(50) > picokrar(n)q" = == (mod 13).
n=0 169 J13
Drawing out common terms of ¢*3"*? and applying operator His in (50),
we obtain
00 35 5
q°H
(51) Zp169k+47(13n + 9)q13n+9 = %(Z) (mod 13),
n=0 fieo  f13

From identities(38) and (51), we have

(o]

. 1
> " preokrar(13n + 9)¢"¥" = 6¢°——  (mod 13).
n=0 169

Dividing the resulting identity by ¢° and changing ¢ to ¢'/!3, then from
resulting identities drawing out common terms of ¢'*"** which occurs on
both sides where x € {1,2,3,4,5,6,7,8,9,10,11, 12}, we complete the proof



760

Murugan.P., Anusree Anand and Fathima. S. N.

of identity (23).
We omit the proofs of identities (24) to (30), since proofs are similar to proof
of identity (23). d

4. PROOFS OF THEOREMS 1.5 AND 1.6

Proof of Theorem 1.5. Setting r = p*k + p*> — 1 in (1), we obtain

> 1
n __
§ pp2k+p2—1(n)q = fp2k+p2,1 :
n=0 1

Using (40) in above identity, we obtain
f1

) (mod pz).
Ip

(52) przkﬂ,z,l(n)q” =

n=0

Employing (35) in (52), we obtain

o0
> Pk (n)q”
n=0

p—1
_ 1 2 m 3mZem 3p2+(6m—+1) 3p2— (6m+1)
:fp(k+1) Z (=1)"q > f(—q e )
P m=—?-1
Wwﬁiﬁ;l
1 £p-1 p?-1 2
(53) t—am (D a7 [z (mod p7).
o
For any prime p with f% <m < 2L consider the following congruence
3m>+m _ p?—1
= d
2 gr (modp),
which is equivalent to (6m + 1)2 = 0 (mod p), since it has only solution
_ Ep—1
= =L

21
Drawing out common terms of ¢”"* "z which occurs on both sides in (53)

then dividing the resulting identity by ¢**~1/24 and changing ¢ to ¢!/?, we
obtain
0o 9 ipfl
pr-1\ (=)
pr2k+p2—1 (pn T )qn ) £ (mod p?).
n=0 fl

From above identity if £ + 1 is multiples of p, then we obtain

+p—1

0 2
p—1 n _— (_1) 6 f 2
(54) pr2k+p2—1 <pn + 24 )q - 7 £ (mod p?).

n=0

Drawing out common terms of g™ which occurs on both sides in (54)
where v € {1,2,...,p — 1}, we complete the proof of identity (31). d
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Proof of Theorem 1.6. Setting r = p?k + p? — 3 in (1), we obtain

00 1
§ no_

Pprktp2—3(n)q" = fp2k+p2_3~
n=0 1

Using (40) in above identity, we obtain

00
n_ f7

(55) Z()pp2k+p2_3(n)q = fg(kl+1) (mod 2.

n=|

Employing identity (36) in identity (55), we obtain

1 R

e 2
m“+m
pr2k+p2—3(n)qn: p(k+1) (-1)™q
n=0 P m=
m;‘é%

s +2m41

S (—1)"(2pn + 2m + g

n=0

1 p—1 P21 3 2
(56) +W'p(*1) 2q 5 fp (modp).
P

For any prime p with 0 < m < p — 1, consider

2 2
-1
m;—mEpS (mod p),

The above congruence is equivalent to (2m + 1) = 0 (mod p), since it has

. _ p71
only solution m = 5=.

2
Drawing out the common terms of qp”+pTl which occurs on both sides in
(56) then dividing the resulting identity by q(p2_1)/8 and changing ¢ to ¢*/?,

we obtain

[eS) 2 p—1

p =1\ , _ (=1) = pf

(57) przkﬂ,z,g (pn + T)q = % (mod p?).
n=0

Employing identity (41) in identity (57), we obtain

[ee) 2 p—1
pr—1\,_(1=zp
E Pp2k4p2—1 (pn + T)q = % (mod p2).
n=0 fp

Drawing out the common terms of ¢ which occurs on both sides where
v € {1,2,...,p — 1} in above identity, we complete the proof of identity

(32).
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